Bridging the Gap: NASA Studies the Human Body in Space for One Year to Extrapolate for Missions to Mars

Before we can run or jump, we walk. Before sending humans to Mars, NASA must understand how the human body is affected by living and working in space. Typical missions to the International Space Station last six months. A round-trip mission to Mars could last three years.  Do the effects of being in space change over time? NASA is asking the scientific community to propose research that will help bridge the gap in our knowledge regarding long-term experiences in space.

Call for Proposals to Address Physiological and Psychological Effects of Spaceflight

NASA’s Human Research Program is now soliciting proposals for research that, when combined with ongoing NASA studies, could enable safer and more effective travel to destinations beyond low-Earth orbit. NASA is seeking research proposals in seven topic areas.   Such research will help NASA establish a baseline for proposed deep space missions up to 400 days in length as well as understand, prevent, diagnose, treat, mitigate, and cure the potential health effects of prolonged spaceflight. Interested scientists and researchers will find a detailed description of the research emphases, as well as the proposal process and awards, on the NSPIRES website.

“To draw any conclusions about the cumulative effects of exposure to space, we need to observe more astronauts spending larger amounts of time in the space environment,” said John Charles, Ph.D., associate director for Exploration Research Planning of the Human Research Program at NASA’s Johnson Space Center.  “Scientists can use the information to predict physical and behavioral health trends.”

Research from the selected proposals is expected to build upon data collected during the first one-year mission when Scott Kelly and Mikhail Kornienko spent nearly a year in space. Additional space station studies, supplemented with research conducted at analogs on Earth, will allow NASA to accumulate a more comprehensive biomedical, behavioral, and performance health dataset.  NASA plans to use the findings to support long-term missions that will reach new milestones in human achievement as astronauts forge a path to Mars. The findings may also support innovative diagnostic and behavioral approaches on Earth; for example, research in team problem-solving skills has the potential to be applied to all personnel involved in any long-duration mission (operational and mission control team members as well as spaceflight crew members) and to any team involved in critical decision-making processes.

Proposals are due January 9, 2018, and NASA expects in late summer 2018 to select 15 to 18 proposals for grants with a maximum duration of seven years.

Connecting the Dots via Multiple Studies in Multiple Missions

Soliciting research for future one-year missions lays the groundwork for exploration missions and will enable NASA to begin planning and preparation for a proposed program of multiple concurrent missions. Researchers and scientists submitting proposals should consider a robust program that could include as many as 30 astronauts: 10 to conduct shorter missions of up to two months, 10 as part of standard six-month missions, and 10 one-year missions in space. An additional 18 research subjects are proposed for Earth-based analog studies (at planned lengths of four months, eight months, and one year).

With information gained from the selected studies, NASA aims to address five hazards of human space travel: space radiation, isolation and confinement, distance from Earth, gravity fields (or lack thereof), and hostile/closed environments that pose great risks to the human mind and body in space.  Analyzing the experiences of multiple astronauts at varying durations could potentially close critical gaps in current scientific understanding.  As NASA moves into a proving ground of missions near the Moon, the agency would continue to test capabilities. NASA could then extrapolate trends from six months out to two or three years, the expected duration of a typical mission to Mars.  Ultimately, such studies could enable NASA to develop and test technologies and countermeasures to protect the health and safety of crew members making history on interplanetary expeditions.

When the day comes for humans to launch on a journey to Mars, humanity will take another giant leap.  The knowledge gained from this research could give NASA a running start.

###

NASA’s Human Research Program (HRP) is dedicated to discovering the best methods and technologies to support safe, productive human space travel. HRP enables space exploration by reducing the risks to astronaut health and performance using ground research facilities, the International Space Station, and analog environments. This leads to the development and delivery of an exploration biomedical program focused on: informing human health, performance, and habitability standards; the development of countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies. HRP supports innovative, scientific human research by funding more than 300 research grants to respected universities, hospitals, and NASA centers to over 200 researchers in more than 30 states.

SOURCE LINK

NASA / NASA to Announce New Astronaut Class on June 7

After evaluating a record number of applications, NASA will introduce its new astronaut candidates at 2 p.m. EDT Wednesday, June 7, from the agency’s Johnson Space Center in Houston.

The astronaut candidates will join acting NASA Administrator Robert Lightfoot, Johnson Center Director Ellen Ochoa, and Flight Operations Director Brian Kelly on stage at the event, which will air live on NASA Television and the agency’s website.

Following the announcement, media in attendance will have the opportunity to speak with experts about the astronaut selection and training processes, and spacecraft in which the new astronauts could fly. In addition, tours of Johnson’s astronaut training facility will be offered. Media must request credentials to attend no later than 6 p.m. Friday, June 2, by calling Johnson’s newsroom at 281-483-5111.

The astronaut candidates also will be available to talk to media in person at Johnson and by remote satellite link June 8. Media interested in this limited opportunity should contract Brandi Dean at brandi.k.dean@nasa.gov to request an interview.

After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket.

With more human spacecraft in development in the United States today than at any other time in history, future astronauts will launch once again from the Space Coast of Florida on American-made commercial spacecraft and carry out exploration missions that will take humans farther into space than ever before.

The astronaut candidates will report to Johnson in August to begin their training in spacecraft systems, spacewalking skills, teamwork, Russian language and other necessary skills.

The new astronaut candidates were chosen from more than 18,300 people who submitted applications from December 2015 to February 2016, more than double the previous record of 8,000 set in 1978. U.S. citizens in all 50 states, the District of Columbia, and U.S. territories Puerto Rico, Guam, and American Samoa applied for a chance to join NASA’s astronaut corps and take part in the nation’s human spaceflight program. Requirements to apply were U.S. citizenship, a bachelor’s degree from an accredited institution in a science, technology, engineering or math (STEM) field and at least three years of related experience, or at least 1,000 hours of pilot-in-command time in jet aircraft.

SOURCE LINK

NASA / Saturday Weather Forecast: 70 Percent ‘Go’

There is a 70 percent chance of favorable weather for Saturday’s planned launch of the eleventh SpaceX cargo resupply mission to the International Space Station. The forecast provided by the U.S. Air Force 45th Weather Squadron cites anvil clouds, cumulus clouds, and flight through precipitation as the primary concerns.

Liftoff of the SpaceX Falcon 9 rocket is scheduled for 5:07 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The vehicle is carrying a Dragon spacecraft loaded with about 6,000 pounds of experiments and supplies bound for the space station. Join us here Saturday beginning at 4:30 p.m. for live countdown coverage.

SOURCE LINK

NASA / SpaceX Dragon to Deliver Research to Space Station

SpaceX is scheduled to launch its Dragon spacecraft for its eleventh commercial resupply mission to the International Space Station June 1 from NASA’s Kennedy Space Center’s historic pad 39A. Dragon will lift into orbit atop the Falcon 9 rocket carrying crew supplies, equipment and scientific research to crewmembers living aboard the station.

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more. Here are some highlights of research that will be delivered to the orbiting laboratory:

New solar panels test concept for more efficient power source

Solar panels are an efficient way to generate power, but they can be delicate and large when used to power a spacecraft or satellites. They are often tightly stowed for launch and then must be unfolded when the spacecraft reaches orbit. The Roll-Out Solar Array (ROSA), is a solar panel concept that is lighter and stores more compactly for launch than the rigid solar panels currently in use. ROSA has solar cells on a flexible blanket and a framework that rolls out like a tape measure.  The technology for ROSA is one of two new solar panel concepts that were developed by the Solar Electric Propulsion project, sponsored by NASA’s Space Technology Mission Directorate.

The new solar panel concepts are intended to provide power to electric thrusters for use on NASA’s future space vehicles for operations near the Moon and for missions to Mars and beyond. They might also be used to power future satellites in Earth orbit, including more powerful commercial communications satellites. The demonstration of the deployment of ROSA on the space station is sponsored by the Air Force Research Laboratory.

Investigation studies composition of neutron stars

Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, are the densest objects in the universe, and contain exotic states of matter that are impossible to replicate in any ground lab. These stars are called “pulsars” because of the unique way they emit light – in a beam similar to a lighthouse beacon. As the star spins, the light sweeps past us, making it appear as if the star is pulsing. The Neutron Star Interior Composition Explored (NICER) payload, affixed to the exterior of the space station, studies the physics of these stars, providing new insight into their nature and behavior.

Neutron stars emit X-ray radiation, enabling the NICER technology to observe and record information about its structure, dynamics and energetics. In addition to studying the matter within the neutron stars, the payload also includes a technology demonstration called the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT), which will help researchers to develop a pulsar-based, space navigation system. Pulsar navigation could work similarly to GPS on Earth, providing precise position for spacecraft throughout the solar system.

Investigation studies effect of new drug on osteoporosis

When people and animals spend extended periods of time in space, they experience bone density loss, or osteoporosis. In-flight countermeasures, such as exercise, prevent it from getting worse, but there isn’t a therapy on Earth or in space that can restore bone that is already lost. The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.

Exposure to microgravity creates a rapid change in bone health, similar to what happens in certain bone-wasting diseases, during extended bed rest and during the normal aging process. The results from this ISS National Laboratory-sponsored investigation build on previous research also supported by the National Institutes for Health and could lead to new drugs for treating bone density loss in millions of people on Earth.

Research seeks to understand the heart of the matter

Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity. The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart. Flies are smaller, with a well-known genetic make-up, and very rapid aging that make them good models for studying heart function. This experiment will help to develop a microgravity heart model in the fruit fly. Such a model could significantly advance the study of spaceflight effects on the cardiovascular system and facilitate the development of countermeasures to prevent the adverse effects of space travel on astronauts.

Investigation shapes the way humans survive in space

Currently, the life-support systems aboard the space station require special equipment to separate liquids and gases. This technology utilizes rotating and moving parts that, if broken or otherwise compromised, could cause contamination aboard the station. The Capillary Structures investigation studies a new method of water recycling and carbon dioxide removal using structures designed in specific shapes to manage fluid and gas mixtures. As opposed to the expensive, machine-based processes currently in use aboard the station, the Capillary Structures equipment is made up of small, 3-D printed geometric shapes of varying sizes that clip into place.

Using time lapse photography, on-ground research teams will observe how liquids evaporate from these capillary structures, testing the effectiveness of the varying parameters. Results from the investigation could lead to the development of new processes that are simple, trustworthy, and highly reliable in the case of an electrical failure or other malfunction.

Facility provides platform for Earth-observation tools

Orbiting approximately 250 miles above the Earth’s surface, the space station provides views of the Earth below like no other location can provide. The Multiple User System for Earth Sensing (MUSES) facility, developed by Teledyne Brown Engineering, hosts Earth-viewing instruments such as high-resolution digital cameras, hyperspectral imagers, and provides precision pointing and other accommodations.

This National Lab-sponsored investigation can produce data to be used for maritime domain awareness, agricultural awareness, food security, disaster response, air quality, oil and gas exploration and fire detection.

These investigations will join many other investigations currently happening aboard the space station. Follow @ISS_Research for more information about the science happening on station.

SOURCE LINK

NASA / New Movie Shows Cassini’s First Dive over Saturn

A new movie sequence of images from NASA’s Cassini spacecraft shows the view as the spacecraft swooped over Saturn during the first of its Grand Finale dives between the planet and its rings on April 26.

The movie comprises one hour of observations as the spacecraft moved southward over Saturn. It begins with a view of the swirling vortex at the planet’s north pole, then heads past the outer boundary of the hexagon-shaped jet stream and beyond.

“I was surprised to see so many sharp edges along the hexagon’s outer boundary and the eye-wall of the polar vortex,” said Kunio Sayanagi, an associate of the Cassini imaging team based at Hampton University in Virginia, who helped produce the new movie. “Something must be keeping different latitudes from mixing to maintain those edges,” he said.

Toward the end of the movie, the camera frame rotates as the spacecraft reorients to point its large, saucer-shaped antenna in the direction of the spacecraft’s motion. The antenna was used as a protective shield during the crossing of Saturn’s ring plane.

As the movie frames were captured, the Cassini spacecraft’s altitude above the clouds dropped from 45,000 to 4,200 miles (72,400 to 6,700 kilometers). As this occurred, the smallest resolvable features in the atmosphere changed from 5.4 miles (8.7 kilometers) per pixel to 0.5 mile (810 meters) per pixel.

“The images from the first pass were great, but we were conservative with the camera settings. We plan to make updates to our observations for a similar opportunity on June 28 that we think will result in even better views,” said Andrew Ingersoll, a member of the Cassini imaging team based at Caltech in Pasadena, California.

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the mission for the agency’s Science Mission Directorate in Washington. JPL is a division of the Caltech in Pasadena. The Cassini imaging operations center is based at Space Science Institute in Boulder, Colorado.

SOURCE LINK

NASA / Hubble Sees Starbursts in Virgo

Although galaxy formation and evolution are still far from being fully understood, the conditions we see within certain galaxies — such as so-called starburst galaxies — can tell us a lot about how they have evolved over time. Starburst galaxies contain a region (or many regions) where stars are forming at such a breakneck rate that the galaxy is eating up its gas supply faster than it can be replenished!

NGC 4536 is such a galaxy, captured here in beautiful detail by the Hubble’s Wide Field Camera 3 (WFC3). Located roughly 50 million light-years away in the constellation of Virgo (The Virgin), it is a hub of extreme star formation. There are several different factors that can lead to such an ideal environment in which stars can form at such a rapid rate. Crucially, there has to be a sufficiently massive supply of gas. This might be acquired in a number of ways — for example by passing very close to another galaxy, in a full-blown galactic collision, or as a result of some event that forces lots of gas into a relatively small space.

Star formation leaves a few tell-tale fingerprints, so astronomers can tell where stars have been born. We know that starburst regions are rich in gas. Young stars in these extreme environments often live fast and die young, burning extremely hot and exhausting their gas supplies fairly quickly. These stars also emit huge amounts of intense ultraviolet light, which blasts the electrons off any atoms of hydrogen lurking nearby (a process called ionization), leaving behind often colorful clouds of ionized hydrogen (known in astronomer-speak as HII regions).

SOURCE LINK

NASA / When Jovian Light and Dark Collide

This image, taken by the JunoCam imager on NASA’s Juno spacecraft, highlights a feature on Jupiter where multiple atmospheric conditions appear to collide.

This publicly selected target is called “STB Spectre.” The ghostly bluish streak across the right half of the image is a long-lived storm, one of the few structures perceptible in these whitened latitudes where the south temperate belt of Jupiter would normally be. The egg-shaped spot on the lower left is where incoming small dark spots make a hairpin turn.

The image was taken on March 27, 2017, at 2:06 a.m. PDT (5:06 a.m. EDT), as the Juno spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was 7,900 miles (12,700 kilometers) from the planet.

The image was processed by Roman Tkachenko, and the description is from John Rogers, the citizen scientist who identified the point of interest.

SOURCE LINK

NASA / NASA’s Cassini Mission Prepares for ‘Grand Finale’ at Saturn

NASA’s Cassini spacecraft, in orbit around Saturn since 2004, is about to begin the final chapter of its remarkable story. On Wednesday, April 26, the spacecraft will make the first in a series of dives through the 1,500-mile-wide (2,400-kilometer) gap between Saturn and its rings as part of the mission’s grand finale.

“No spacecraft has ever gone through the unique region that we’ll attempt to boldly cross 22 times,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “What we learn from Cassini’s daring final orbits will further our understanding of how giant planets, and planetary systems everywhere, form and evolve. This is truly discovery in action to the very end.”

During its time at Saturn, Cassini has made numerous dramatic discoveries, including a global ocean that showed indications of hydrothermal activity within the icy moon Enceladus, and liquid methane seas on its moon Titan.

Now 20 years since launching from Earth, and after 13 years orbiting the ringed planet, Cassini is running low on fuel. In 2010, NASA decided to end the mission with a purposeful plunge into Saturn this year in order to protect and preserve the planet’s moons for future exploration – especially the potentially habitable Enceladus.

But the beginning of the end for Cassini is, in many ways, like a whole new mission. Using expertise gained over the mission’s many years, Cassini engineers designed a flight plan that will maximize the scientific value of sending the spacecraft toward its fateful plunge into the planet on Sept. 15. As it ticks off its terminal orbits during the next five months, the mission will rack up an impressive list of scientific achievements.

“This planned conclusion for Cassini’s journey was far and away the preferred choice for the mission’s scientists,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “Cassini will make some of its most extraordinary observations at the end of its long life.”

The mission team hopes to gain powerful insights into the planet’s internal structure and the origins of the rings, obtain the first-ever sampling of Saturn’s atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn’s clouds and inner rings. The team currently is making final checks on the list of commands the robotic probe will follow to carry out its science observations, called a sequence, as it begins the finale. That sequence is scheduled to be uploaded to the spacecraft on Tuesday, April 11.

Cassini will transition to its grand finale orbits, with a last close flyby of Saturn’s giant moon Titan, on Saturday, April 22. As it has many times over the course of the mission, Titan’s gravity will bend Cassini’s flight path. Cassini’s orbit then will shrink so that instead of making its closest approach to Saturn just outside the rings, it will begin passing between the planet and the inner edge of its rings.

“Based on our best models, we expect the gap to be clear of particles large enough to damage the spacecraft. But we’re also being cautious by using our large antenna as a shield on the first pass, as we determine whether it’s safe to expose the science instruments to that environment on future passes,” said Earl Maize, Cassini project manager at JPL. “Certainly there are some unknowns, but that’s one of the reasons we’re doing this kind of daring exploration at the end of the mission.”

In mid-September, following a distant encounter with Titan, the spacecraft’s path will be bent so that it dives into the planet. When Cassini makes its final plunge into Saturn’s atmosphere on Sept. 15, it will send data from several instruments – most notably, data on the atmosphere’s composition – until its signal is lost.

“Cassini’s grand finale is so much more than a final plunge,” said Spilker. “It’s a thrilling final chapter for our intrepid spacecraft, and so scientifically rich that it was the clear and obvious choice for how to end the mission.”

SOURCE LINK

NASA / NASA Analyzes Storms that Caused Deadly Colombia Mudslides

NASA conducted an analysis of the heavy rainfall that occurred over Colombia that triggered flooding and mudslides.

Late Friday night, March 31, and early morning Saturday, April 1, flash flooding and mudslides killed more than 250 people in Mocoa, Colombia. Extremely intense storms added heavy rain to waterlogged terrain around Mocoa. Water from this heavy rainfall converged into a river that runs close to Mocoa causing it to overflow its banks with deadly results.

NASA’s GPM, or Global Precipitation Measurement, mission satellite provides information on precipitation from its orbit in space. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency.

GPM also utilizes a constellation of other satellites to provide a global analysis if precipitation. At NASA’s Goddard Space Flight Center in Greenbelt, Maryland, those data are incorporated into NASA’s IMERG, or Integrated Multi-satellite Retrievals for GPM, to provide a total picture of precipitation events.

IMERG data were used to estimate the amount of rain that fell near Mocoa, Colombia, during a seven-day period from March 26 to April 2, 2017. IMERG indicated that area rainfall totals during the week were frequently greater than 80 mm (3.1 inches). The analysis also showed the locations of heavy rainfall that extended from east of Mocoa into the high mountains that surround the city. Torrents of water rushed from the high terrain and were funneled into the valley where Mocoa is located, causing the flooding and mudslides.

IMERG creates a merged precipitation product from the GPM constellation of satellites. These satellites include DMSPs from the U.S. Department of Defense, GCOM-W from the Japan Aerospace Exploration Agency, Megha-Tropiques from the Centre National D’etudies Spatiales and Indian Space Research Organization, NOAA series from the National Oceanic and Atmospheric Administration, Suomi-NPP from NOAA-NASA, and MetOps from the European Organisation for the Exploitation of Meteorological Satellites.  All of the instruments (radiometers) aboard the constellation partners are inter-calibrated with information from the GPM Core Observatory’s GPM Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR).

SOURCE LINK